Nuclear Energy: A Snapshot of Today And The Outlook for Tomorrow

Mary Quillian Senior Manager, Environmental Policy and Planning Nuclear Energy Institute 202-739-8013

<u>mmq@nei.org</u>

19 NOVEMBER 2004

Key Trends in Nuclear Business

- Consolidation of ownership, operating responsibility
- 2) Improved performance: equivalent to output of 19 1,000-MW

U.S. Nuclear Plant Output (billion kWhr)

Key Trends in Nuclear Business U.S. Nuclear Plant Production Costs (O&M + Fuel)

Current Electric Generation

U.S. Electric Generation by

Fuel Source (2003)

New England Generation by

Fuel Source (2002)

New England Nuclear Plants

	Capacity (MW)	Generation 2003 (MWh)	License Expiration Date
Millstone 2	869	6,328,000	Nov, 2015
Millstone 3	1,136	9,750,000	Jul, 2025
Pilgrim	690	4,978,000	Jun, 2012
Seabrook	1,161	9,276,000	Oct, 2026
Vermont Yankee	506	4,444,000	Mar, 2012

NOx, SO₂, and CO₂ Emissions Avoided by U.S. Nuclear Power Plants

Year	SO ₂	NOx	CO ₂
	(thousand short	(thousand short	(million metric
	tons)	tons)	tons)
New England 2003	80	23	23
United States 2003	3,360	1,240	680
Emissions reduced at	5,100	1,970	CO ₂ emissions
U.S. fossil generating			not regulated by
plants 1990-2001 as a			Clean Air Act
Act amendments			

 SO_2 emissions for the electric power sector in 1990 were 15.73 million tons; by 2001, emissions had been reduced to 10.63 million tons, a 5.1-million-ton reduction. NOx emissions from the power sector in 1990 were 6.66 million tons; by 2001, NOx emissions had been reduced to 4.69 million tons, a 1.97-million-ton reduction.

License Renewal of Current Fleet of Nuclear Plants

U.S. Nuclear Plant License Renewal Status

(as of November, 2004)

Expanding Capacity of The Current Fleet of Nuclear Plants

Power Uprates: with capital investment, existing plants can increase capacity. NRC must approve these license amendments.

United States:

- Approximately 2,000 MWe added 2000-2003
- Approximately 2,000 MWe under review at NRC
- There is likely 2,500 MWe potential uprate capacity beyond

New England:

- Approximately 20 MWe added 2000-2003
- Approximately 180 MWe under review at NRC
- There is likely 170 MWe potential uprate capacity beyond

Update on Used Fuel Disposal Continuing Progress

- Congressional approval for siting repository at Yucca Mountain in 2002
- DOE and industry working with Nevada to address concerns and resolve issues
- Action needed on Nuclear Waste Fund and congressional appropriations
 - Nuclear Waste Fund has collected \$23 billion since 1982; \$14 billion remains unspent
- License application to be submitted to the NRC December, 2004
- Anticipate first fuel delivered to repository 2010

New Nuclear Power Plants: The Business Case

- Industry believes new nuclear capacity can be built at an overnight capital cost of \$1,000-1,200 per kilowatt
- Competitive with gas-fired combined cycle plants at \$600 per kilowatt with gas delivered at \$4-5 per million Btu

Competitive with new baseload coal-fired capacity

- Conventional pulverized coal with full environmental controls (\$1,000-1,200 per kW)
- *"Clean coal" technologies (\$1,200-1,500 per kW)*

Validating the Licensing Process

- New licensing process created in 1992 Energy Policy Act:
 - All regulatory approvals up front
 - Early site permits
 - Design certifications
 - Combined construction/operating license (COL)
- Dominion, Exelon, Entergy seeking early site permits
- Two consortia (NuStart Energy, Dominion) have responded to Department of Energy solicitation for proposals to demonstrate process for obtaining COL (including first-of-a-kind design and engineering)
- TVA: feasibility study at Bellefonte

The Capital Cost Challenge

New Nuclear Power Plants: Market Potential by 2020

- At \$1,250/kWe = 23 GW
- ► At \$1,125/kWe = 62 GW
- Carbon tax of \$5/metric ton in 2011, rising to \$50/metric ton by 2020 = 108 GW¹
- 1. For reference, carbon allowance price under McCain-Lieberman estimated at \$79 per metric ton in 2010, \$221 per metric ton in 2025 (EIA analysis of S.139)

Source: Electric Power Research Institute, 2002, using EIA NEMS forecasting model

New Nuclear Plants Under McCain-Lieberman Legislation

(2010-2016 GHG emissions capped at 2000 level)

- ▶ By 2020 = 17 GW
- ▶ By 2025 = 49 GW
- McCain-Lieberman plus high natural gas prices = 65 GW by 2025
- No new nuclear sensitivity case = significantly (34%) higher carbon allowance prices in 2025
- ► Nuclear capital cost assumptions: \$2,118/kW ⇒ \$1,660/kW in 2020

Source: Energy Information Administration analysis of S. 139

The Energy/Carbon Challenge

- To cap global CO₂ concentrations at no more than 550 ppm*, must achieve average emission rate < 0.2kgC/kWh</p>
- Today's best technology:
 - O.9kgC/kWh for coal-based systems
 - 0.4 kgC/kWh for natural gas
- This suggests need for massive deployment of zero-carbon technologies

* Today's level ~ 375 ppm *Source: EPRI Electricity Technology Roadmap*

Conclusions

- Continued operation of existing nuclear power plants is vital for:
 - electric price stability
 - future success of emission reduction programs
- More capacity from current fleet (uprates) available, but limited
- Fuel diversity is desirable for price stabilization and reliability
- U.S. and worldwide: cannot achieve significant reductions in greenhouse gas emissions without additional nuclear power
- Policy makers should be supportive of various types of generation to maintain fuel diversity

